(2w+4)w=160^2

Simple and best practice solution for (2w+4)w=160^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2w+4)w=160^2 equation:



(2w+4)w=160^2
We move all terms to the left:
(2w+4)w-(160^2)=0
We add all the numbers together, and all the variables
(2w+4)w-25600=0
We multiply parentheses
2w^2+4w-25600=0
a = 2; b = 4; c = -25600;
Δ = b2-4ac
Δ = 42-4·2·(-25600)
Δ = 204816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204816}=\sqrt{16*12801}=\sqrt{16}*\sqrt{12801}=4\sqrt{12801}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{12801}}{2*2}=\frac{-4-4\sqrt{12801}}{4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{12801}}{2*2}=\frac{-4+4\sqrt{12801}}{4} $

See similar equations:

| (x+5)=60 | | 5(c-17)=-65 | | 4(3x-4)=5 | | 3x-20÷2x=15 | | 18=x/3+12 | | 181+15x=20x-149 | | 76=8(m+3.1) | | 3x-12=-7x+32 | | z/6+7=-32 | | x-33=65 | | 5=0.75(x-12) | | 14=k+3k+-2 | | 18-6v=3v | | 980=-10(10x+22) | | 32n=32+26n | | x-49=18 | | -(1/6)(x-18)+(1/3)(x+3)=x+9 | | 7u-26=-5(2-3u) | | 8d=4d+8 | | 6b-8b=-10 | | 3/5(2r-8)=18 | | 3995=47(p+15) | | 251-17x=591 | | 60*70=50*11x-4 | | 2m+3m=180 | | 7x-14=X=3 | | (x-54166)/10200=2.5 | | 0=6x^2+6x+12 | | 4z-3(9-2z)z=5 | | 8j=7j | | (2×)+x=180 | | 6|p|=48 |

Equations solver categories